Group Report 1964-26 A Remark on Orthonormal Bases of Continuous Functions in a Hilbert Space T. S. Pitcher 12 May 1964 Prepared under Electronic Systems Division Contract AF 19 (628)-500 by # Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexington, Massachusetts # ESD RECORD COPY SCIENTIFIC & TECHNICAL INFORMATION DIVISION (ESTIL BUILDING 121) # ESTI PROCESSED DOC TAB PROJ OFFICER ACCESSION MASTER FILE DATE JUN 1 0 1968 ESTI CONTROL NR. AL YE 665 CY NR CY AD 600534 The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500. # MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY # A REMARK ON ORTHONORMAL BASES OF CONTINUOUS FUNCTIONS IN A HILBERT SPACE T. S. PITCHER Group 66 GROUP REPORT 1964-26 12 MAY 1964 ### Abstract It is shown that an orthonormal set of continuous functions on a finite interval can always be completed by the addition of continuous functions if it is a finite set but cannot always be so completed if it is an infinite set. Accepted for the Air Force Franklin C. Hudson, Deputy Chief Air Force Lincoln Laboratory Office ## A Remark on Orthonormal Bases of Continuous Functions in a Hilbert Space The following problem has been proposed: let H be the Hilbert space of square integrable functions on a finite interval I and let (φ_i) be an orthonormal set of continuous functions in H — when can (φ_i) be extended to a complete orthonormal set of continuous functions? This problem occurs under certain circumstances when approximating white noise by sums $\sum \theta_i \varphi_i(t)$ where the θ_i are independent Gaussian random variables. In this note we prove that (φ_i) can be so extended if it is a finite set and present an example to show that (φ_i) cannot always be extended if it is infinite. Both the proof and the example apply equally well if continuity is replaced by n-times differentiability. Theorem If $\varphi_1,\ldots,\varphi_n$ is an orthonormal set of continuous functions then continuous functions $\varphi_{n+1},\ \varphi_{n+2},\ldots$ can be found such that φ_i , $i=1,2,\ldots$ is a complete orthonormal set. Proof Let (ψ_i) be a complete orthonormal set of continuous functions (e.g., the trigonometric functions). Set $$\varphi_{n+1} = \alpha_1(\psi_1 - \sum_{j=1}^{n} (\psi_1, \varphi_j)\varphi_j)$$ where α_l is 0 if ψ_l is a linear combination of the φ_i 's and is chosen to normalize φ_{n+1} otherwise. Continuing in this way, i.e., setting $$\varphi_{\mathrm{n+k+1}} = \alpha_{\mathrm{k+1}} (\psi_{\mathrm{k+1}} - \sum_{\mathrm{j=1}}^{\mathrm{n+k}} (\psi_{\mathrm{k+1}}, \varphi_{\mathrm{j}}) \varphi_{\mathrm{j}}),$$ deleting the φ_{n+k} with α_k = 0 and then renumbering gives the desired sequence. We will need the following lemma in constructing the example. Lemma On any finite interval I with end point a there exists a complete orthonormal set φ_0 , φ_1 ,... satisfying - (1) $\varphi_0 = 1$ - (2) φ_i is continuous - (3) $\varphi_{i}(a) = 0$, if i > 0. Proof There exist continuous functions ψ_i such that φ_o , ψ_1 , ψ_2 ,... is a complete orthonormal set. Let η be a continuous function with $\eta(a)=0$ and $(\varphi_o,\eta)=1$. Given any continuous function ξ and any $\varepsilon>0$ we can, by modifying ξ in a sufficiently small neighborhood of a, construct a continuous function ξ' with $\xi'(a)=0$ and $\|\xi-\xi'\|<\varepsilon$. Then $\xi''=\xi'-(\varphi_o,\xi')\eta$ is continuous and satisfies (i) $$\xi''(a) = 0$$ (ii) $$(\xi'', \varphi_0) = 0$$ (iii) $$\| \xi - \xi'' \| \le \| \xi - \xi' \| + | (\varphi_0, \xi') | \| \eta \|$$ $$\leq \epsilon (1 + || \eta ||) + (\varphi_{\Omega}, \xi) || \eta || .$$ In particular taking $\xi = \psi_i$ so that the last term vanishes and choosing $\varepsilon = 2^{-k}/(1 + ||\eta||)$ we can construct a continuous function $\psi_{i,k}$ with (iv) $$\psi_{i,k}(a) = 0$$ $$(v) \qquad (\psi_{i,k}, \varphi_{0}) = 0$$ (vi) $$\|\psi_{i} - \psi_{i,k}\| \le 2^{-k}$$. Now when we apply the Gram-Schmidt procedure to the sequence $\varphi_0, \psi_1, 1'$, $\psi_1, 2', \psi_2, 1', \psi_2, 2 \dots$ none of the linear combinations after the first involve φ_0 by (v) so they all vanish at a. The resulting orthonormal sequence approximates the ψ_1 's arbitrarily closely, hence is complete, and hence satisfies the requirements of the lemma. We will now construct a complete orthonormal set ψ_1,\dots with ψ_1 discontinuous and all the ψ_i , i>l continuous. This if we take ψ_2 , ψ_3,\dots for our orthonormal set of continuous functions it can only be completed by adjoining the discontinuous function ψ_1 or $-\psi_1$. We divide the interval I into subintervals I_1 and I_2 at the point a and choose complete orthonormal sets φ_0^i , φ_1^i ,... in I_i according to the previous lemma. Then the set $\psi_1=\varphi_0^1-\varphi_0^2$, $\psi_2=\varphi_0^1+\varphi_0^2$, φ_1^1 , φ_1^2 , φ_2^1 , φ_2^1 , φ_2^2 ,... is complete and orthonormal and has ψ_1 as its only discontinuous member. In the above example $(\varphi_i)^{\perp}$, the orthogonal complement of the given set of φ^i s was finite dimensional. An example with infinite dimensional $(\varphi_i)^{\perp}$ can be constructed by breaking I into three intervals, say $I_1 = [0, a]$, $I_2 = [a, b]$ and $I_3 = [b, 1]$. We will need the following modification of the above lemma. Lemma There exists a complete orthonormal set φ_1^2 , φ_2^2 ,... on [a, b] in which each φ_i is a continuous function with $\varphi_i(a) = \varphi_i(b) = 0$. Proof The proof is similar to that of the preceding lemma except that (iv) is changed to (iv') $$\psi_{i,k}(a) = \psi_{i,k}(b) = 0$$ and (v) is dropped. Now we take sets $(\varphi_0^1, \varphi_1^1, \dots)$, $(\varphi_1^2, \varphi_2^2, \dots)$ and $(\varphi_0^3, \varphi_1^3, \dots)$ such that (φ_i^j) is a complete orthonormal set in I_j , $\varphi_0^1 = 1$ on I_1 , $\varphi_0^3 = 1$ on I_3 , and $\varphi_i^1(a) = \varphi_i^2(a) = \varphi_i^2(b) = \varphi_i^3(b) = 0$ for $i \ge 1$. We take for our set of continuous orthonormal functions the union of the sets $(\varphi_1^1, \varphi_2^1, \dots)$ and $(\varphi_1^2, \varphi_2^2, \dots)$. The orthogonal compliment of this set is all functions of the form $c\varphi_0^1 + f$ where f vanishes outside I_3 . No matter how the set is completed it will contain at least one function of the above form with $c \ne 0$ and hence with a discontinuity at a. #### DISTRIBUTION ## Group 28 P. L. Falb L. A. Gardner, Jr. F. C. Schweppe # Group 37 H. E. Moses ## Division 6 G. P. Dinneen W. E. Morrow, Jr. ## Group 62 K. L. Jordan, Jr. I. L. Lebow # Group 63 R. M. Lerner # Group 64 E. J. Kelly, Jr. M. J. Levin R. Price ## Group 66 T. J. Goblick, Jr. J. R. Kinney T. S. Pitcher B. Reiffen E. Weiss